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Disclaimer: There are many subtleties that are missing, especially those re-
lated to finiteness conditions on complexes of sheaves.

1 Introduction

Theorem 1.1 (Smooth base change). Let f : X → S be a smooth morphism,
g : S′ → S be a (quasi-compact) morphism of schemes, and F a sheaf of Z/n-
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modules on S′, where n is invertible on S,

X ′ = X ×S S′
g ′
//

f ′

��

X

f
��

S′
g

// S

then we have an isomorphism

f ∗Rq g∗F → Rq g ′∗ f ′∗F .

Remark 1.2. By taking limit, the same statement still holds if we take F to be
a Ql -sheaf on S′. Thus, we only need to care about the “torsion” case.

Remark 1.3. The isomorphism above comes from isomorphisms on the level of
complexes. Indeed, if L ∈ Db(S′), then the derived-categorical version of this
version is

f ∗Rg∗L→ Rg ′∗ f ′∗L

is a quasi-isomorphism (i.e. isomorphism in the derived category). This is
the form that we will take in this talk. For brevity, we have written Db(S) =
Db(S,Z/n).
Remark 1.4. In fact, the following stronger statement is true. Namely, if we take
K ∈ Db(X ) such that all cohomology sheaves are locally constant, then we have
the following isomorphism (in the derived category)

K ⊗L f ∗Rg∗L ∼= Rg ′∗(g
′∗K ⊗L f ′∗L).

Remark 1.5. When the map g is proper then regardless of whether f is smooth
or not, we have the following

K ⊗L f ∗Rg∗L
∼= // K ⊗L Rg ′∗ f ′∗L

∼= // Rg ′∗(g
′∗K ⊗L f ′∗L),

where the first isomorphism is the proper base change theorem and the second
isomorphism is projection/pull-push formula for proper morphisms.

Note that the map

K ⊗L f ∗Rg∗L→ Rg ′∗(g
′∗K ⊗L f ′∗L)

always exists. It’s the isomorphism that we are seeking.

2 Local Acyclicity

We will consistently use the following notation.
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Notations: f : X → S morphism of schemes, x a point in X , s = f (s) a point in
S. eX x = SpecO sh

X ,x , eSs = SpecO sh
S,s. Usually, we denote t̄ an arbitrary geometric

point of eSs. K ∈ Db(X ). We will also frequenly use the following diagram:

X s̄
ĩ //

fs
��

X ×S eSs

f̃
��

X t̄
j̃

oo

ft

��

s̄ i // S̃s t̄
j

oo

Finally, unless otherwise specified, all geometric points are algebraic. For exam-
ple, if Spec K → S is a geometric point of S whose image is t, then K is algebraic
over k(t). In other words, K ⊂ k(t).

2.1 Motivation and Preliminary Properties

Étale locally, a smooth morphism is like a mapAn
S → S and hence, we expect that

cohomology behaves nicely from fibers to fibers. We wish to use this property to
establish the smooth base change theorem. We will now formulate this notion
precisely.

Definition 2.1. f is locally acyclic at x with respect to K if the following natural
map is an isomorphism (take appropriate pull-back of K to various spaces to make
sense of this) for any geometric point t̄ of eSs̄.

RΓ (eX x , K)∼= RΓ (X̃ x ×S̃s
t̄, K).

Equivalently, the following adjunction map is an isomorphism

(ĩ∗K) x̄ → (ĩR j̃∗ j̃∗K) x̄ .

Definition 2.2. f is locally acyclic with respect to K if it’s locally acyclic with
respect to K at all x.

f is universally locally acyclic (ULA) with respect to K if the pull-back of f and
K via any morphism S′→ S are still acyclic (with respect to each other).

Remark 2.3. We see at once that f is locally acyclic with respect to K if and only
if for all points s ∈ S and for all geometric point t̄ of eSs̄, the following natural
morphism is an isomorphism

ĩ∗K → ĩ∗R j̃∗ j̃∗K .

We will now see how we can insert the complex L as in the base change
theorem.
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Proposition 2.4. Suppose f is locally acyclic with respect to K then for any L ∈
Db( t̄) (basically, just a complex of Z/n-modules), we have an isomorphism

ĩ∗(K ⊗L f̃ ∗Rj∗L)→ ĩ∗R j̃∗( j̃
∗K ⊗L f ∗t L).

Proof. First, note that the natural map i∗L→ i∗Rj∗ j∗L is an isomorphism when
L is a complex with locally constant (hence constant) cohomology sheaves. This
can be shown by induction on the length of the complex (using truncation).
When the complex is of length 1, this can be seen easily from the fact that j∗
is exact (using the fact that t̄ is a geometric point, and hence, has no higher
cohomology).

Thus, if we view L to be a complex over S̃s̄ (just a constant complex), then

ĩ∗(K ⊗L f̃ ∗Rj∗L)∼= ĩ∗K ⊗L ĩ∗ f̃ ∗Rj∗L
∼= ĩ∗K ⊗L f ∗s i∗Rj∗L
∼= ĩ∗K ⊗L f ∗s i∗Rj∗ j∗L
∼= ĩ∗K ⊗L f ∗s i∗L
∼= ĩ∗K ⊗L ĩ∗ f̃ ∗L.

But since ĩ∗K ∼= ĩ∗R j̃∗ j̃∗K by acyclicity assumption, we get

ĩ∗K ⊗K ĩ∗ f̃ ∗L ∼= ĩ∗(R j̃∗ j̃∗K ⊗L f̃ ∗L)
∼= ĩ∗R j̃∗( j̃

∗K ⊗L j̃∗ f ∗L)
(pull-push formula for complexes L with H i(L) are locally constant)

∼= ĩ∗R j̃∗( j̃
∗K ⊗L f ∗t L).

Remark 2.5. Note to self: the projection formula for proper map is done by
looking at stalks. At the level of stalk, proper base change allows us to only look
at the geometric fibers. But now, the base of each geometry fiber is just a point.
Thus, we are done if we can show projection formula where the complex in the
base is such that all cohomology sheaves are locally constant. This statement is
proved directly, and it’s just formal.

Remark 2.6. Note to self: There is some subtlety about needing R j̃∗ to be a
bounded chain complex. This is, however, satisfied by a theorem. (To return.)

We have the following easy consequence of the proposition above.
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Corollary 2.7. Suppose f is locally acyclic wrt. K. Let t̄ be a geometric point of
S,

X t̄

f ′

��

γ′
// X

f
��

t̄
γ
// S

then for all L ∈ Db( t̄) (a complex of Z/n-modules), then the following natural
map is an isomorphism

K ⊗L f ∗Rγ∗L→ Rγ′∗(γ
′∗K ⊗L f ′∗L).

Proof. Basically, just use the fact that two sheaves are isom if there is a map
between them that induces isomorphisms on all stalks.

2.2 Link to the Base Change Map

We will now show that the base-change map is an isomorphism when the mor-
phism is universally locally acyclic (ULA). First, we prove for the case where g
is an open immersion.

Proposition 2.8. If f is locally acyclic wrt. K then for any open immersion S′→ S
and for any L ∈ Db(S′),

X ′
g ′
//

f ′
��

X

f
��

S′
g
// S

the following natural map is an isomorphism

K ⊗L f ∗Rg∗L→ Rg ′∗( f
′∗K ⊗L g ′∗L).

In other words, the base change map is an isomorphism for f and K.

Proof. This is a standard devissage argument. First, let t̄ be a geometric point
of S′, and hence, of S as well, since S′ is an open subscheme of S.

X ′t̄
j′
//

f t̄
��

X ′
g ′
//

f ′

��

X

f
��

t̄
j
// S′

g
// S
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We will first show the isomorphism for the case where L = Rj∗L
′. Then, by

applying corollary 2.7 for the square on the left and the big rectangle, we have

K ⊗L f ∗Rg∗L ∼= K ⊗L f ∗Rg∗Rj∗L
′

∼= K ⊗L f ∗R(g ◦ j)∗L
′

∼= R(g ′ ◦ j′)∗((g
′ ◦ j′)∗K ⊗L f ∗t̄ L′)

∼= Rg ′∗Rj′∗( j
′∗g ′∗K ⊗L f ∗t̄ L′)

∼= Rg ′∗(g
′∗K ⊗L f ′∗Rj∗L

′)
∼= Rg ′∗(g

′∗K ⊗L f ′∗L).

In particular, this is true when t̄ is a geometric point over a closed point of S′.
This serves as the first step of our induction. Suppose we have an isomoprhism
for any complex L supported on a proper closed subscheme of S′, we will now
prove that it’s also true for any complex L in general. Without loss of generality,
we assume that S′ is irreducible. Let η̄ be a geometric point of the generic point
of S′ and γ : η̄→ S′, then for any complex L ∈ Db(S′), we have the following
exact triangle

L // Rγ∗γ
∗L // P // · · ·

Since γ∗Rγ∗γ
∗L ∼= γ∗L, γ∗P ∼= 0 and hence, P is suported on a proper closed

subscheme of S′. Thus, we get the isomorphism for P. The isomorphism for
Rγ∗γ

∗L is from corollary 2.7 above. Thus, we are done.

Remark 2.9. There is another way to do devissage for this case. First, we can
assume that L concentrates at one degree, i.e. it’s a sheaf. Moreover, we can
assume that this sheaf is constructible. Thus, we can embed our sheaf into
⊕ j∗Z/n and do a 5-lemma argument as in the proof of the proper base change
theorem.

We will now show the isomorphism in general.

Theorem 2.10. If f is universally locally acyclic wrt. K then for any morpshim
g : S′ → S (that is quasi-compact and quasi-separated) and for any L ∈ Db(S′),
the following natural is an isomorphism

K ⊗L f ∗Rg∗L→ Rg ′∗(g
′∗K ⊗L f ′∗).

Proof. Using an affine open cover of S′ and an argument with the Cech to de-
rived cohomology spectral sequence, we can reduce to the case where S′ is
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affine. By passage to limits, we can assume that this affine subscheme is of
finite type over S. But now, we can compactify S′:

X ′
j′
//

f ′

��

X ′
ḡ ′
//

f̄
��

X

f
��

S′
j
// S′

ḡ
// S

where j is an open immersion, and ḡ ◦ j = g.
Now, we have

K ⊗L f ∗Rg∗L ∼= K ⊗L f ∗Rḡ∗Rj∗L
∼= Rḡ ′∗( ḡ

′∗K ⊗L f̄ ∗Rj∗L) (proper base change)
∼= Rḡ ′∗Rj′∗( j

′∗g ′∗K ⊗L f ′∗L) (by ULA and theorem)
∼= Rg ′∗(g

∗K ⊗L f ′∗L).

3 Local Acyclicity of Smooth Morphisms

From what we have shown in the previous section, to prove smooth base-change
theorem, it suffices to show the following.

Theorem 3.1. Let f : X → S be a smooth morphism, and let n be an integer
invertible on S, then f is universally locally acyclic wrt. Z/n.

Before proving the theorem, we note the following direct consequence.

Corollary 3.2. Let f : X → S be a smooth morphism and let n be an integer
invertible on S. Then for any complex K ∈ Db(X ) whose cohomology sheaves are
locally constant on X , f is universally locally acyclic wrt. K.

Proof (Sketch). It suffices to prove for a single locally constant sheaf (and then
use induction on length). But for a locally constant sheaf, étale-locally, the sheaf
is just a constant sheaf, which can be thought of as the pull-back of a constant
sheaf M on the base. Using the smooth base change theorem above, we basically
reduce to showing that

i∗M ∼= i∗Rj∗M .

But this has been shown before, and hence, we are done.

We will now sketch the proof of theorem 3.1. First, note that it suffices to
prove local acyclicity (instead of universal local acyclicity) since smoothness is
preserved under base change.
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3.1 Reduction Step

We will now try to reduce to the following case: S = Spec A, where A is a strict
Henselian ring, X = Spec A{T}, where A{T} denotes the strict Henselization of
A[T] at (m, T ) with m being the maximal ideal of A.

First, we observe that the composition of two morphisms that are acyclic
wrt. to Z/n is also acyclic wrt. Z/n. Now, the situation is local on both S on
X . Thus, we can assume that S = Spec A, where A is a strict Henselian ring.
Now, since X is smooth over S, after shrinking X , we can factor X → S as
X → An

S → S where X → An
S is an etale morphism. Since acyclicity is clear for

étalemorphisms (as the fiber over any formal disc around a geometric point is
just a disjoint union of the same thing, it suffices to prove for the case X = An

S .
But now, since we can factor An

S → A
n−1
S → · · · → A1

S → S, it suffices to prove
for the case X = A1

S . Since the situation is local over X , it suffices to do it for the
case where X = Spec A{T}. Moreover, we can also assume that the geometric
point t̄ t of S lies over the generic point t of S and S is normal.1

3.2 End of the Proof

By what we have said above, we only need to consider the following case: X =
Spec A{T} and S = Spec A with A normal, strict Henselian, t̄ a geometric point
lying over the generic point of S.

We need to prove the following:

Theorem 3.3.

H i(X ×S t̄)∼=

¨

Z/n, when i = 0,

0, when i > 0.

First, since we are working with (limits of open curves), we only care about
i = 0,1 since for i > 1, cohomology groups vanish. This is still quite difficult
and it relies on tricky results in commutative algebra.

i = 0. Essentially, all we need to do is to show that X ×S t ′ is connected
for any separable extension k(t ′) of k(t) inside k(t) (since cohomology com-
mutes with projective limits of schemes). In other words, we want to show that
Spec A{T} ⊗A k(t ′) is connected. Note that A{T} ⊂ A[[T]], and since k(t ′) is
flat over A, we have A{T}⊗A k(t ′) ⊂ A[[T]]⊗A k(t ′) ⊂ k(t ′)[[T]] where the last

1This is basically because pulling back to t̄ is the same as pulling back to the normalizer of
{t} in k(t) first and then pulling back to k( t̄). There’s something about excellent ring that says
that the normalizer is finite over S and is also strictly Henselian.
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inclusion is due to the fact that A⊂ k(t) ⊂ k(t ′). Since k(t ′)[[T]] is integral, so
is A{T} ⊗A k(t ′).
(In SGA 41

2 , there’s some argument that goes like this, which I don’t fully under-
stand. Let A′ be the normalizer of A inside k(t ′), then some result of Henselian
ring says that A{T}⊗AA′ ∼= A′{T}, which is a normal strict Henselian ring, which
is, in particular, an integral domain. Thus, we can conclude the same thing for
A{T}⊗A k(t ′)∼= A{T}⊗A A′⊗A′ k(t ′) since k(t ′) is just the field of fractions of A′.
But integrality implies connectedness and we are done.)

i = 1. For H1, we want to show the following

Proposition 3.4. All Galois étale covers of X ×S t̄ of degree n are trivial (where n
is invertible in S).

In other words, if eX t̄ be an étale Galois cover of X t̄ , then it’s trivial. This is a
bit more involved. We need the following result by Abhyankar. The argument
uses some depth argument. I haven’t studied it carefully yet, but the upshot is
that it suffices to prove things for an open set whose complement has codim≥ 2
(EGA IV, vol 4).

Theorem 3.5. Let S = Spec A be a strictly Hensenlian DVR with uniformizer π
and generic point t, and X an irreducible scheme which is smooth with relative
dimension 1 over S. Let eX t be an Galois étale cover of Xη of degree n invertible in
S, and S1 = Spec (A[π1/n]). Denote the subscript 1 be the base change from S to
S1. Then, eX1η can be extended to an étale cover of X1.

Using this result, we can assume that (the price is to enlarge k(t), which is
ok, since we actually base change to k( t̄) in the end) eX t̄ actually comes from
V ′, an étale Galois cover of V = XU , where U is an open subscheme of S whose
complement has codimension ≥ 2. Further enlarging k(t), we can also assume
that over T = 0, this cover is trivial.

Now, let B = Γ (V ′,OV ′), then since V ′ is the preimage of V in Spec B,2 it
suffices to prove that B is finite étale over A{T} (and hence, decompose into
direct product of copies of A{T} since A{T} is strictly Henselian). Let X̂ =
Spec A[[T]] and denote −̂ the base change of everything from X to X̂ . X̂ is

2This probably goes as follows. By Zariski’s main theorem, we know that there is an open
immersion V ′→ V ′′, where V ′′ is finite over Spec A{T}. Moreover, since V ′→ V is finite, we can
choose V ′′ such that the preimage of V inside V ′′ is just V ′. The only problem left is to show that
Γ (V ′′,OV ′′) = Γ (V ′,OV ′) = B. Since the complement of V in Spec A{T} has codim ≥ 2, the same
statement applies to V ′ in V ′′. If this implies some depth ≥ 2 then we should have our desired
conclusion.

9



faithfully flat over X . One then have Γ (V̂ ′,OV̂ ′)
∼= B ⊗A{T} A[[T]] =: B̂, and it

suffices to see that this ring B̂ is finite étale over A[[T]] since étaleness is a local
property in the flat topology.

Let Vm (resp. V ′m) be the subscheme of V̂ (resp. V̂ ′) defined by T m+1 = 0.
By assumption, V ′0 is a trivial cover of V0, and hence, so are the covers V ′m/Vm,
since the étale topology is insensitive to nilpotents.3 We have the following map

ϕ : Γ (V̂ ′,OV̂ ′)→ lim←−
m

Γ (V ′m,OV ′m
) = (lim←−

m

Γ (Vm,OVm
))n.

We have Γ (Vm,OVm
) ∼= A[T]/(T m+1) (some depth ≥ 2 thing), and ϕ is a

homomorphism of B̂→ A[[T]]n. Over U , this gives n distinct sections of V̂ ′/V̂ :
V̂ ′ is hence just n copies of V̂ . The complement of V̂ in X̂ is of codimension 2
(and things are normal), hence, we indeed have B̂ = A[[T]]n, and we are done.
Upshot: only need to prove things for an open subscheme whose complement
has codim≥ 2.

4 Applications

In this section, unless otherwise specified, f : X → S be a morphism of schemes,
K a complex of Z/n-sheaves on X , s, t, s̄, t̄, i, j, ī, j̄ are as above.

Using the natural map ī∗K → ī∗R j̄∗ j̄∗K , we have the following sequences of
maps:

RΓ (X s̄, ī∗K)→ RΓ (X s̄, ī∗R j̄∗ j̄∗K)← RΓ (X ×S S̃s̄, R j̄∗ j̄∗K)← RΓ (X t̄ , j̄∗K).

The last arrow is always an isomorphism (basically because push forward pre-
serves injectives). When f is locally acyclic wrt. K , then the first arrow is also
an isomorphism. Hence, we get the cospecialization map:

RΓ (X t̄ , j̄∗K)→ RΓ (X s̄, ī∗K).

Proposition 4.1. Let f : X → S be a locally acyclic morphism wrt. Z/n. Suppose
the cospecialization map

RΓ (X t̄ ,Z/n)→ RΓ (X s̄,Z/n)

is an isomorphism for any s̄, t̄ , then for any L ∈ Db(S,Z/n), we have

(Rf∗ f ∗L)s̄ ∼= RΓ (X s̄, f ∗L).
3More precisely, we can just lift all the sections that trivialize this étale covering using lifting

property of étale morphisms (formal smooth etc.).
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Proof (Sketch). We only need to prove for sheaves. The result is immediate for
the case where L = j∗Z/n, using smooth base change. For a constructubible
thing, we can embed to ⊕ j∗Z/n and argue as usual. Or alternative, did the
devisage as above. Thus, we are done.

Corollary 4.2. Let f : An
S → S be the canonical projection then for any L ∈ Db(S),

the canonical morphism is an isomorphism in the derived category

L→ Rf∗ f ∗L.

Proof (Sketch). It suffices prove for the case n = 1 and L is a sheaf. Moreover,
we only need to check the stalks, i.e. we want to show that

Ls̄
∼= (Rf∗ f ∗L)s̄.

But we note that the second morphism and the composition of the two mor-
phisms in the following sequence of maps are isomorphisms (by the corollary
above and an explicit computation of the cohomology of An):

Ls̄→ (Rf∗ f ∗L)s̄→ RΓ (An
s̄ , f ∗L).

So, the remaining one Ls̄→ (Rf∗ f ∗L)s̄ has to be an isomorphism as well.

Corollary 4.3. Let f : X → S be a proper morphism and smooth morphism, then
for any locally constant sheaf F on X , Ri f∗F is a locally constant sheaf on S.

Proof (Sketch). By a theorem of Deligne, we know that Ri f∗ are all constructible.
Since all cospecialization maps are isomorphisms (by using both smooth base
change and proper base change), all these sheaves must be locally constant.

5 Nearby and Vanishing Cycles

5.1 Motivation and Definition

In this section, S is the spectrum of a strict Henselian DVR (a trait, in the lan-
guage of SGA) and X be a scheme over S. We keep the same notation as above,
but replace t and t̄ by η and t̄ respectively, where η is the generic point of S.

Let K ∈ Db(X ), then we have seen above that the natural morphism plays
an important role in the whole theory of acyclicity

ĩ∗K → ĩ∗R j̃∗ j̃∗K .
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The nearby cycle associated to K and f is defined by

RΨ f K = ĩ∗R j̃∗ j̃∗K .

When f is locally acyclic wrt. K then this morphism is an isomorphism. In
general, it is not and we can complete it to an exact triangle. The cone is defined
as the vanishing cycle complex and we have the following exact triangle

ĩ∗K → RΨ f K → RΦ f K → ĩ∗K[1]→ ·· ·

From what we have seen, the following two propositions are obvious:

Proposition 5.1. When f is smooth and when K ∈ Db(X ) such that all cohomol-
ogy sheaves are locally constant then RΦ f K vanishes.

Proof. Clear.

Proposition 5.2. When f is proper and K ∈ Db(X ) then the following natural
morphism is an isomorphism

RΓ (X η̄, j̃′∗K)→ RΓ (X s̄, RΨ f K).

Remark 5.3. The catch phrase: cohomology of the generic fiber is isomorphic
to the cohomology of the nearby cycles on the special fiber.

Proof. Direct from the proper base change theorem.

5.2 A Sketch of Monodromy of Lefschetz Pencil

To be written.

6 Reference

SGA 41
2 .
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