
FACTORIZATION ALGEBRAS AND CATEGORIES: A TUTORIAL

Q.P. HỒ
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1. Introduction

The theory of factorization algebras has its root in vertex algebras and inspirations coming from physics. It was
later reformulated in the beautiful language of algebraic geometry in the case of curves by Beilinson and Drinfel’d
in [BD]. The theory was further generalized to higher dimensional setting by Francis and Gaitsgory in [FG11].
One categorical level up, the theory of factorization categories as well as factorization algebras in a factorization
category was worked out by Raskin in [Ras15]. This is the topic of this talk. Most of the material given here comes
from [FG11,Ras15].

The topological analog of the theory was later developed by Lurie, Ayala, Francis etc. (see, for eg. [Lur,AF12]).
We do not make much use of this picture. In our opinion, however, the geometric nature of factorization is
most evident in this form, especially at the level of factorization categories. Because of this reason, to illustrate
what we are really talking about, in the introduction, we will start with a quick references to this setting before
moving on to describing the algebro-geometric picture. Since we do not use this topological story, we will strive
for intuition rather than precision. Moreover, since logically, the topological material is mostly independent from
the algebro-geometric picture, the readers who are only interested in the latter can skip the motivational material
given by the former.
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In this introduction section, we will give some motivation and common examples to the factorization pattern,
both topologically (to help with intuition) and algebro-geometrically (because this is what we actually use).

1.1. What is factorization? We will now give a brief introduction to what factorization really means intuitively,
both topologically and algebro-geometrically.

1.1.1. The topological picture. The topological analog of a factorization algebra is that of a Diskn-algebra. The
motto is that Diskn-algebras interpolate between associative and commutative algebras.

1.1.2. Let Disktn denote the ∞-category of n-disks, equipped with a symmetric monoidal structure given by
disjoint union. More precisely, the objects of Diskn are disjoint copies of n-dimensional disks, and morphisms
given by the spaces of embedding.

Let C be a symmetric monoidal ∞-category. Then the category of Diskn-algebra in C,

AlgDiskn (C) = Fun
⊗(Diskn, C)

is de�ned as the category of symmetric monoidal functors from Diskn to C.

1.1.3. Let A ∈ AlgDiskn (C), then by abuse of notation, we will also use A to denote its value A(©) on a single copy
of a disk. The monoidal property of the functor A implies that

A(©tk) ' A(©)⊗k ' A⊗k .

Moreover, by functoriality, each embedding
©tk → ©

gives rise to a multiplication map
A⊗k → A.

Remark 1.1.4. (i) The notion of a Disk1-algebra recovers that of an associative algebra.
(ii) When n →∞, we recover commutative algebras.
(iii) For intermediate n’s, we have a space of multiplications, parametrized by the space of embedding.

Remark 1.1.5. Note that for intermediate 1 < n < ∞, we have no analog in the classical (i.e. 1-categorical rather
than ∞-categorical) world. In fact, in the classical world, AlgDiskn is automatically commutative as soon as n > 1.

Example 1.1.6. Let X be any based topological space. Then for any n ≥ 1, ΩnX is a Diskn-algebra (in the category
of topological spaces).

One example that keeps showing up in the conference is the a�ne Grassmannian, or more interestingly, the
Beilinson-Drinfeld version of the a�ne Grassmannian. Its topological analog is Ω2BG, which is naturally a Disk2-
algebra. This is the topological reason behind the fact that the Beilinson-Drinfeld Grassmannian admits a natural
factorization structure.

1.1.7. Algebro-geometric picture. In this subsection, we will provide the intuition behind the de�nition a factorizable
sheaf. Morally speaking, a Diskn-algebra is a constant factorization sheaf. In other words, a factorizable sheaf on X
is a “multi-colored” version of a Diskn-algebra, where the colors are given by points on X .

We will use constructible sheaves as our sheaf theory in this subsection, for both concreteness’ sake and the
fact that constructible sheaves are the closest to the topological world. For the rest of this talk, however, the sheaf
theories that we will use are quasi-coherent sheaf QCoh and sheaves of categories ShvCat.

1.1.8. Recall that intuitively, a Diskn-algebra in a symmetric monoidal category C is an object A in C equipped
with a family of multiplications

(1.1.9) A⊗k → A⊗l

parametrized by embeddings ©tk ↪→ ©tl subjected to a system of homotopy coherences. To keep the discussion
simple, for now, we will further restrict ourselves to the case where C = Vect, the ∞-derived categories of chain
complexes of vector spaces over an algebraically closed �eld of characteristic 0.
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Translated to the algebro-geometric world, given F ∈ Shv(X), to equip it with the structure of a factorization
sheaf, we need a device that associates to each subset of points

{x1, . . . , xn} ⊂ X

a vector space
Fx1, · · · ,xn ' Fx1 ⊗ · · · ⊗ Fxn

such that when the points “collide”, we get multiplication maps similar to that of (1.1.9).

1.1.10. Let’s look at the case when n = 2, for example, then (1.1.8) could be captured as a sheaf

(F � F)| ◦
X2
∈ Shv(

◦

X2).

The multiplication map could then be used to glue the sheaf

(F � F)| ◦
X2
∈ Shv(

◦

X2).

and the original sheaf
F ∈ Shv(X)

to obtain a new sheaf
F(2) ∈ Shv(X2)

such that
δ !F(2) ' F and j!F(2) ' (F�2)| ◦

X2

where

X δ // X2
◦

X2 = X2\X .
j

oo

1.1.11. We can do the same thing for higher n’s as well.
The result is a series of sheaves

F(I) ∈ Shv(X I )

for any non-empty �nite set I such that
(i) (Ran condition) For each surjection I � J , which induces an embedding

∆I/J : X J → X I ,

we are given an equivalence
∆
!
I/JF

(I) ' F(J ) .

(ii) (Factorizable condition) For each partition I ' I1 t I2, we are given an equivalence

F(I) |(X I1×X I2 )disj ' (F
(I1) � F(I2))|(X I1×X I2 )disj

1.1.12. The above spells out what a factorization sheaf should be intuitively. Of course, there are compatibilities
that we haven’t stated explicitly. We will do that later in the text.

Remark 1.1.13. Note that we can modify the “de�nition” in 1.1.11 to get the notion of a factorizable space. Namely,
it’s a sequence of space (or more precisely, prestacks) over the powers of X satisfying the Ran and factorizable
conditions, where !-restrictions are replaced by pullbacks.

One prominent example is the Beilinson-Drinfeld a�ne Grassmannian.

1.2. One categorical level up.

1.2.1. Topological picture. As mentioned in Remark 1.1.5, in the classical setting (i.e. working within a 1-category),
we discover no new phenomenon when working with Diskn-algebras. However, if we move one categorical level
up, i.e. working with the category of 1-categories, which is now a 2-category, equipped the Cartesian product as
the monoidal structure, interesting examples show up.
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1.2.2. More precisely, when n = 1, we recover the notion of a monoidal category, and when n = ∞ (in fact,
su�ces to take n ≥ 3) we recover the notion of a symmetric monoidal category.

When n = 2, the multiplication map (i.e. taking tensor) is governed by embeddings of disjoint copies of 2-disks
into a 2-disk, which is controlled by the braid groups. We thus recover the classical notion of a braided monoidal
category.

1.2.3. In general, given aDiskn-category C, one can talk aboutDiskn-algebras in C. This generalizes the de�nition
of a Diskn-algebra in a symmetric monoidal category.

1.2.4. Algebro-geometric picture. As expected, factorization categories and factorization algebras in a factorization
category are the multi-colored versions of Diskn-categories and Diskn-algebras in a Diskn-category respectively.

Intuitively, a factorization category should form sequence of sheaves of categories C(n) over Xn satisfying the
Ran and factorization conditions subjecting to some homotopy coherence condition.

The rest of this talk is devoted to showing how one can make factorization categories as well as factorization
algebras in a factorization category rigorous.

2. Some categorical constructions

In this section, we will collect various categorical constructions needed to formulate the concept of factorization
categories and factorization algebras in a factorization category.

2.1. Prestacks and lax prestacks. The theory of factorization algebras can be conveniently encoded using a certain
space called the Ran space. Informally, the Ran space of a scheme parametrizes the set of non-empty �nite subsets
of X itself. To make sense of this, we will need the notion of a prestack.

The theory of lax prestacks can seem a bit too abstract on the �rst encounter. In the theory of factorization
algebras/categories, lax prestacks’ main role is in the encoding unital structures (for eg. unital algebras, unital
monoidal structure). In this talk, to keep things simple, we will exclusively treat the non-unital case. Lax prestacks
only appear in the formal construction of a commutative factorization category from a symmetric monoidal
category §4.2. The ideas behind this construction is quite easy to understand. In particular, the readers could safely
ignore the materials on lax prestacks without losing any intuition.

2.1.1. Let Sch denote the category of DG-schemes over an algebraically closed �eld k of characteristic 0. A
prestack Y, by de�nition, is just a functor

Y : Schop → Spc,

where Spc is the category of ∞-groupoids.
We will use PreStk to denote the category of prestacks.

2.1.2. For any prestack Y, we de�ne
RanY = colim

I ∈fSetsurj,op
YI

where fSetsurj is the category of non-empty, �nite sets, where we only allow surjections as morphisms

Remark 2.1.3. When X, S are classical (i.e. non-derived) schemes, then one can check that

(RanX)(S) = {non-empty, �nite subsets of X(S)},

which justi�es the de�nition.

Remark 2.1.4. We often consider D-modules on RanX on a scheme X (not necessarily classical), or equivalently,
quasi-coherent sheaves on the de-Rham prestack (RanX)dR = RanXdR. For any scheme S, one can see that

(RanXdR)(S) = {non-empty, �nite subsets of X(S)}.

2.1.5. By Yoneda’s lemma, we have a fully-faithful embedding

Sch→ PreStk.
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2.1.6. For some constructions, we will also need the notion of a lax-prestack. The de�nition is similar to that
of a prestack, except that we replace Spc in the target by Catsmall, the category of small ∞-categories. Namely, a
lax-prestack Y is a functor

Y : Schop → Catsmall .
We will use LaxPreStk to denote the category of lax-prestacks.

2.1.7. Given a lax-prestack Y, we can invert all the non-invertible arrows to form a prestack out of it. We will use
Ystr to denote the resulting prestack.

Example 2.1.8. One useful example is the following. Given a prestack Y, the functor

fSetsurj,op → Sch

I 7→Y I

gives rise, via the Grothendieck construction, to a Cartesian �bration

X fSet
surj
→ fSetsurj .

We can view this as a morphism of lax-prestacks, where fSetsurj is a constant lax-prestacks.
We have a map

X fSet
surj
→ RanX

which exhibits RanX as (X fSet
surj
)str.

See [Gai15, §6.1] for a more detailed discussion.

2.1.9. Note that for any category C, giving a functor

F : Cop → Cat

is the same as giving a Cartesian �bration
F̃ → C

via the Grothendieck construction. Recall that here, for any c ∈ C, the �ber of F̃ over c is precisely F (c).
Thus, giving a lax-prestack Y is equivalent to giving a Cartesian �bration

Sch/Y → Sch.

More generally, any lax-prestack Y over a scheme S gives rise to a Cartesian �bration

Sch/Y → Sch/S .

The �bers of this �bration are groupoids if and only if Y is a prestack.

2.2. Sheaves of categories. As we have seen above, a general pattern for formulating a factorizable object (sheaf
or category) in algebraic geometry starts with the notion of sheaves. Since we are trying to formulate factorizable
categories, we need to make sense of what it means to have a sheaf categories. We will only make use of the
elementary part of this theory. For an in-depth discussion, the reader should consult [Gai13].

2.2.1. Consider the following functor

ShvCat : Schop → Cat

S 7→ QCoh(S) -mod

2.2.2. We can Right-Kan-extend this functor along

Schop → PreStk

to obtain
ShvCat : PreStkop → Cat.

With a bit more work, we can in fact make sense of sheaves of categories on a lax prestack, i.e. a functor1

ShvCat : LaxPreStkop → Cat.

1Note that what we call ShvCat here is ShvCatnaive in [Ras15].
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2.2.3. Note that any lax-prestack Y is equipped with a sheaf of category QCohY.

2.2.4. Let
f : X→ Y

be a morphism between lax-prestacks. We will use f ∗ to denote the functor

ShvCat( f ) : ShvCat(Y) → ShvCat(X).

2.2.5. The functor f ∗ admits a right adjoint f∗ which satis�es base change. However, we need to understand
the word “base change” in the correct way when the objects involved are lax-prestacks and not merely prestacks.
Indeed, the correct pull-back diagram to consider in this case is

Xz/

��

// X

��

Z
z // Y

Note that when Y is a prestack, we recover the “usual” pull-back

Xz/ ' X ×Y Z.

2.2.6. Let f : X→ Y be a morphism of lax-prestacks as above. Let C ∈ ShvCat(X). The fact that f∗ satis�es base
change allows us to reduce the computation of f∗C to the case where Y is a scheme. Namely,

f : X→ S

where S is now a scheme.

2.2.7. When S = pt = Spec k, and f : X→ pt is the structure map, then we will use the following notation

Γ(X, C) = f∗C ∈ DGCat.

For example,
Γ(X,QCohX) ' QCoh(X)

for any lax-prestack X.
Moreover, one can shown that the functor

Γ(X, −) : ShvCat(X) → DGCat

factors through
Γ
enh(X, −) : ShvCat(X) → QCoh(X) -mod .

2.3. Multiplicative sheaves of categories.

2.3.1. The idea. The intuition comes from the following observation: if C andD are symmetric monoidal categories,
then the category of functors

Fun(C,D)

is canonically endowed with a monoidal structure (Day’s convolution). A right lax monoidal functor from C to D is
precisely an algebra object in this category. And the category of monoidal functors form a full sub-category cut out
by the requirement that the relevant maps (i.e. F (A) ⊗ F (B) → F (A ⊗ B)) are equivalences. This creates a clear
separation between structures and conditions, which is usually technically convenient.2

Recall that a Diskn-algebra is a monoidal functor out of the symmetric monoidal category Disktn . We can draw
on the idea presented above to implement this in two steps: �rst consider lax-monoidal functors, and then single
out the monoidal ones. Roughly speaking, weakly multiplicative sheaves encode the lax-monoidal structure, and
multiplicative ones are cut out by the monoidal condition.

2This is especially true in the world of ∞-categories, where structures usually come in the form of complicated homotopy coherence data.
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2.3.2. Correspondences (a digression). For the applications that we have in mind, we need to consider the category of
correspondences in prestacks, denoted by Corr(PreStk). A morphism from S to T is given by a prestack M �tting
into the following diagram

(2.3.3) M

s

��

t

��

S T

where the 2 legs are morphisms of prestacks.

2.3.4. Using the fact that (−)∗ for sheaves of categories on prestacks admit right adjoints (−)∗ which satis�es base
change, the theory developed in [GR] allows us to form a functor

ShvCat : Corr(PreStk) → Cat

where functoriality is given by t∗s∗ (see (2.3.3) for the notation).
Note that restricting this extended version of ShvCat along

PreStkop → Corr(PreStk)

recovers the usual the theory of sheaves of categories on prestacks.

2.3.5. (Weakly) Multiplicative sheaves of categories over a commutative monoid. The role of the symmetric monoidal
category C in §2.3.1 will be played by a commutative monoid object in Corr(PreStk). To �x the notation, we
usually write such a monoid object as follows

multS
m1

zz

m2

""
S × S S

Roughly speaking, a weakly multiplicative sheaf of categories over S is a sheaf of categories C ∈ ShvCat(S)
equipped with a multiplicative map (analog of the lax-monoidal structure)

(2.3.6) ηm : m∗1(C� C) → m∗2C

and similar maps for the n-ary multiplications for all n.
The category of multiplicative sheaves of categories is cut out by the condition that ηm is an equivalence.

2.3.7. Just like in the case of a lax-monoidal functor, ηm carries with it homotopy coherence data. To rigorously
spell this out, we will use the same idea as mentioned in §2.3.1, i.e. de�ne it as an algebra object in an appropriate
category, GrothCorr(ShvCat), whose construction we will sketch below.

2.3.8. Consider the following general paradigm. Let F : Iop → Catpres be a functor, where I admits �ber products.
We can de�ne the category GrothCorr(F ) with the following properties:

(i) Objects are pairs (i ∈ I, Xi ∈ F (i)).
(ii) Morphisms (i, Xi ) → ( j, X j) are given by the data of a correspondence in I

h
α

��

β

��
i j

along with a morphism
ϕi j : F (α)(Xi ) → F (β )(X j).

(iii) Compositions are given using �ber products in the usual way.
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2.3.9. Observe that when I is symmetric monoidal, and F is right lax-symmetric monoidal, the forgetful functor

GrothCorr(F ) → ICorr

is symmetric monoidal.

2.3.10. We will now give a sketch of the construction of GrothCorr(F ):
(i) First, note that the functor F gives rise to a coCartesian �bration Groth(F ) → Iop which commutes with

pushouts.
(ii) From the category (Groth(F )op)Corr. This category essentially captures all the coherence information we are

trying to capture.
(iii) The category that we are looking for,GrothCorr(F ), can now be realized as a certain subcategory of (Groth(F )op)Corr.

2.3.11. Applying the discussion above to I = PreStk and F = ShvCat, we obtain a symmetric monoidal category
PreStkShvCatCorr . Similarly, for lax prestacks, we get LaxPreStkShvCatCorr .

2.3.12. We are now ready to de�ne (weakly) multiplicative sheaves of categories. Indeed, let

S ∈ ComMon(Corr(PreStk))

be a commutative monoid. Since
PreStkShvCatCorr → Corr(PreStk)

is symmetric monoidal, we obtain a functor

ComMon(PreStkShvCatCorr ) → ComMon(Corr(PreStk)).

The categoryMultCatw(S) of weakly multiplicative sheaves of categories on S �ts into the following pullback
diagram of categories

MultCatw(S)

��

// ComMon(PreStkShvCatCorr )

��

{S} // ComMon(Corr(PreStk))

In words, a weakly multiplicative sheaf of categories on S is a commutative monoid in PreStkShvCatCorr mapping to
the commutative monoid S under the forgetful functor. Unwinding the de�nition, we see that this recovers the
structure that we look for (i.e. the map (2.3.6)).

2.3.13. A weakly multiplicative sheaf of categories is multiplicative if all the multiplication maps in (2.3.6) are
equivalences. We will useMultCat(S) ⊆ MultCatw(S) to denote this subcategory.

2.4. Multiplicative objects in a multiplicative sheaf of categories.

2.4.1. Let S be a commutative monoid in Corr(PreStk) and C a weakly multiplicative sheaf of categories over S.
Let C = Γ(S, C). A weakly multiplicative object in C is an object c ∈ C, equipped with a “multiplication” map

(2.4.2) ηm(m∗1(c � c)) → m∗2(c) ∈ Γ(multS, m
∗
2(c)),

and similar n-ary multiplication operations.
A weakly multiplicative object is said to be multiplicative if all the maps (2.4.2) are equivalences.

2.4.3. We useMultw(C) andMult(C) to denote the categories of weakly multiplicative objects and multiplicative
objects in a weakly multiplicative sheaf of category C, respectively.

2.4.4. As in the case of (weakly) multiplicative sheaves, to make it rigorous, we need to encode the homotopy
coherence data accompanying the maps (2.4.2). This can be done using a variant of the Grothendieck construction
as above. The readers may consult [Ras15] for details.

3. Factorization categories

Now that we have set up the required technology, the formulations of factorization categories and factorization
algebras in a factorization category are particularly simple.
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3.1. The chiral commutative monoid structure on Ran. Let X be prestack, then RanX is equipped with the
structure of a symmetric monoid, where the multiplication maps are given by

(RanX × RanX)disj
m2

((

m1

uu

RanX × RanX RanX

and similar maps for n-ary operations. Here, m1 is the obvious inclusion and m2 is the “union” map.

3.1.1. We will use Ranch X to emphasize the commutative monoid structure on RanX.

3.2. Factorization categories. A factorization category over X is de�ned to be a multiplicative sheaf of categories
on Ranch X. We will use FactCat(X) to denote the category of factorization categories over X.

3.2.1. Using weak multiplicative instead of multiplicative, we get the notion of a weak factorization category over
X. We will use FactCatw(X) to denote the category of such objects.

3.2.2. Let us brie�y mention how this de�nition is related to the intuitive formulation given in §1.1.11.
First, note that by de�nition, a sheaf of category C on RanX consists of a collection of sheaves of categories

C(I) ∈ ShvCat(XI )

for each I ∈ fSetsurj. This collection satis�es the following condition: for each surjection I � J in fSetsurj, inducing

∆I/J : XJ → XI ,

we are given an equivalence
∆
∗
I/J C

(I) → C(J ),

compatible with compositions of surjections. Note that this is precisely the Ran condition in §1.1.11
Second, unwinding the multiplicative nature of an object C ∈ FactCat(X), we see that C satis�es the factorization

condition in §1.1.11.

3.3. Factorization algebras in a factorization categories. Let C ∈ FactCat(X), ormore generally, C ∈ FactCatw(X).
A factorization algebra in C is a multiplicative object of C. We will use Fact(C) to denote the category of factoriza-
tion algebras in a (weak) factorization category C.

3.3.1. Given a C ∈ FactCatw(X), using weakly multiplicative instead of multiplicative, we get the notion of a
weak factorization algebra in C. We will use Factw(C) to denote the category of all such objects.

4. Commutative factorization categories

4.1. Commutative factorization categories and algebras. The de�nitions of commutative factorization categories
and commutative factorization algebras in a commutative factorization categories are very similar to factorization
categories and factorization algebras considered above. Instead of Ranch X, however, we consider the commutative
monoid Ran?X, whose monoid structure is given by the union maps

(Ran?X)n
union
−→ RanX.

4.1.1. We have a natural morphism in ComMon(Corr(PreStk))

Ranch X→ Ran?X.

This induces a functor

MultCatw(Ran?X) →MultCatw(Ranch X) ' FactCatw(X),

and for any C ∈ MultCatw(Ran?X), a functor

Multw(C) → Factw(C).

Note that the object on the left is over Ran?X, whereas the one on the right is over Ranch X.
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4.1.2. The category ComFactCat(X) of commutative factorization categories �ts into the following pull-back
square

ComFactCat(X) //

��

FactCat(X)

��

MultCatw(Ran?X) // FactCatw(X)

Similarly, given a commutative factorization category C, the category of commutative factorization algebras in
C �ts into the following pullback diagram

ComFact(C) //

��

Fact(C)

��

Multw(C) // Factw(C)

Note that the objects on the right column are with respect to Ranch X, whereMultw(C) is over Ran?X.

4.1.3. Roughly speaking, a commutative factorization category is a sheaf of categories C on RanX with a
morphism

η : C� C→ union∗(C) ∈ ShvCat(RanX × RanX),

that is an equivalence over the disjoint locus.
Similarly, a commutative factorization algebra in C is an object C ∈ Γ(RanX, C) with morphisms

η(C � C) → union∗(C) ∈ Γ(RanX × RanX, union∗(C))

that is an equivalence over the disjoint locus.

Example 4.1.4. The simplest example for a commutative factorization category is QCohX. When X = XdR for
some scheme X , then (commutative or otherwise) factorization algebras in QCohX coincide with the objects
discussed in [BD,FG11].

4.2. Commutative factorization category from a symmetric monoidal category. A commutative factorization
category can be thought of as a constant family of symmetric monoidal category. In this subsection and the next,
we will give a construction of a commutative factorization category from a symmetric monoidal DG-category.
Throughout this subsection, X = XdR where X is a scheme. In this case QCoh(X) = D(X).

4.2.1. The idea. Let C be a symmetric monoidal DG-category, i.e. we have functors of the form

C ⊗ C ⊗ · · · ⊗ C→ C.

As in the introduction section, the idea is to use these “multiplication” maps to glue various tensor-powers of
C together to get a family of sheaves of categories on X I for all I ∈ fSetsurj satisfying the Ran and factorization
properties.

4.2.2. Let us now demonstrate how the idea works over X = XdR and X2 = (X2)dR.
On X , the desired sheaf of categories is given by C(1) = C ⊗ D(X).
Indeed, the sheaf of categories C(2) �ts into the following pullback diagram of categories

C(2) //

��

C ⊗ D(X2)

idC⊗ j!
��

(C ⊗ C) ⊗ D(
◦

X2)
(−⊗−)⊗id

D(
◦
X2)
// C ⊗ D(

◦

X2)
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4.2.3. The construction. We will now sketch the actual construction. Consider the functor

fSetsurj → PreStk

I 7→ (RanX)Idisj,

such that for s : I � J , the corresponding map

(RanX)Idisj → (RanX)
J
disj

is obtained by taking union along the �bers of s.
Using the (coCartesian version of the) Grothendieck construction, we obtain a lax-prestack (RanX)fSet

surj

disj
equipped with lax-prestack morphism

(RanX)fSet
surj

disj → fSetsurj

where the latter is viewed as a constant lax-prestack.
Note that (RanX)fSet

surj

disj has a natural map to RanX via union, and we get a correspondence of lax-prestacks

(RanX)fSet
surj

disj

yy %%

RanX fSetsurj

4.2.4. Now, giving a symmetric monoidal category C is the same as giving a symmetric monoidal functor

fSetsurj → DGCat,

which could be viewed as a sheaf of categories on fSetsurj. Pull and push along the correspondence above gives the
desired commutative factorization category on RanX.

4.2.5. An alternative perspective. We quickly mention an alternative way to glue together C ⊗ C on
◦

X2 and C on the
diagonal X . Indeed, instead of the pullback in (4.2.2), one can consider the following pushout diagram

C ⊗ C ⊗ D(X)

idC⊗C⊗i∗
��

(−⊗−)⊗idD(X)
// C ⊗ D(X)

��

C ⊗ C ⊗ D(X2) // C(2)

4.3. An example. LetG be an a�ne algebraic group. The category ofG-representation, RepG, is a symmetric
monoidal DG-category. The construction above gives a commutative factorization category (RepG)RanX over
RanX.

Over X2, it parametrizes representations ofG, with the structure of a representation ofG×G on the complement
to the diagonal, compatible with the diagonal embeddingG → G ×G.

4.3.1. Alternatively, an analog of the procedure described above allows us to turn the commutative Hopf algebra
O(G) into a commutative factorization Hopf algebra O(G)RanX, and hence, a factorizable a�ne group scheme
GRanX. The category QCoh(BGRanX) coincides with the category (RepG)RanX constructed above.
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