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Diagrammatic Monte Carlo for electronic correlation in molecules:
High-order many-body perturbation theory with low scaling
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We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using
combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn)
perturbation series, obtaining accurate correlation energies up to n = 5, with quadratic scaling in the number of
basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation
problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of
many-body systems described by Hugenholtz diagrams.
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I. INTRODUCTION

The many-electron correlation energy, defined as the dif-
ference between the true energy of a many-electron system
and that obtained in the Hartree-Fock (HF) approximation
[1–6], plays a central role in the theoretical description of a
wide array of phenomena in chemistry, physics, and material
science [1,6–12]. The development of highly efficient com-
putational methods for calculating the correlation energy is
thus an ultimate goal of modern electronic structure theory
[2,3,7]. Many-body perturbation theory (MBPT) [1,5] and
coupled-cluster (CC) theory [2] are the two primary methods
for treating the effects of dynamic correlation, where a single
HF state provides a qualitatively correct zeroth-order approx-
imation to the electronic wave function [2]. Both MBPT
and CC methods have been very successful in predicting the
correlation energies of small- and medium-sized molecules
[2,5], whereas second-order Møller-Plesset perturbation the-
ory (MP2) [1–3] is the method of choice for calculating
electron correlation effects in large systems involving thou-
sands of atoms [4,5].

However, widespread application of MPn and CC meth-
ods to larger molecules is limited by the steep scaling of
the computational cost (Nn+3 in the case of MPn) with
the number of spin orbitals N [4,5,13]. This problem has
motivated the development of ingenious low-scaling meth-
ods [14–18]. Among those, several promising Monte Carlo
(MC) techniques rely on stochastic sampling of configuration-
interaction (CI) [19,20] and CC [21] expansions in imaginary
time or performing real-space MC integration to obtain MPn
energies [5,22–25].

In this paper, we introduce a stochastic approach to the
many-electron correlation problem in molecules based on the
powerful diagrammatic Monte Carlo (DiagMC) methodology
[26–28], which uses direct sampling of the entire diagram-
matic series for the many-electron correlation energy to obtain

numerical results free of systematic bias. Originally devel-
oped in the context of quantum impurity problems [26,28],
DiagMC has been applied with great success to a wide range
of problems in quantum many-body physics, including exotic
impurities with internal degrees of freedom [29–32], corre-
lated lattice fermions [33], unitary Fermi gases [34], and
nonequilibrium quantum dynamics [35]. Recent applications
of the DiagMC approach have provided numerically exact
correlation energies of the homogeneous electron gas [36] and
of an infinite chain of hydrogen atoms [37]. Thus far, however,
save for a very recent application to molecular quantum impu-
rity problems at finite temperature [38], DiagMC has not been
applied to calculate molecular correlation energies, likely due
to the topological complexity of the underlying Hugenholtz
diagrams.

Here, we overcome this problem by using combinatorial
graph theory to encode Hugenholtz diagrams into adjacency
matrices, a technique recently developed in nuclear physics
[39,40]. This allows us to design general and efficient up-
dates for sampling the diagrammatic expansions of MBPT
using the Metropolis algorithm. Unlike full configuration-
interaction MC [20], stochastic MPn theory in real space
[5,22–24], or DiagMC for molecular quantum impurities [38],
our DiagMC/MPn method evaluates the correlation energy
directly based on a random walk in the space of Hugenholtz
diagrams, rather than that of Slater determinants or in real
space.

We apply our approach to calculate the correlation energies
of small molecules, obtaining accurate MPn results up to
n = 5 with low scaling, opening up the possibility of comput-
ing accurate dynamical correlation energies for much larger
systems. Because our methodology only relies on graph the-
ory, it can be easily extended beyond electronic structure
theory to include the diagrammatic expansions that occur in,
e.g., vibrational spectroscopy [41–43], crystal phonon pertur-
bation theory [44–46], and nuclear physics [39,40].
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II. MPn THEORY AND MATRIX ENCODING
OF HUGENHOLTZ DIAGRAMS

In MPn theory [3–5], the nonrelativistic electronic Hamil-
tonian Ĥ = ∑

εiĉ
†
i ĉi + 1

2

∑
i jkl〈i j||kl〉ĉ†

i ĉ†
j ĉl ĉk is partitioned

into the mean-field reference Hamiltonian Ĥ0 = ∑
i εiĉ

†
i ĉi

plus a fluctuation potential V̂ = Ĥ − Ĥ0, where εi are the HF
orbital energies, ĉ†

i (ĉi) are the creation (annihilation) opera-
tors for the electron in the ith HF spin orbital, respectively,
and 〈i j||kl〉 are the antisymmetrized two-electron repulsion
integrals (ERIs) [1]. The correlation energy is given by the
Rayleigh-Schrödinger perturbation series including only the
linked terms [3,47],

Ec = E − EHF =
∑
m=0

〈V̂ (R̂0V̂ )m〉L, (1)

where R̂0 = (1 − |�0〉〈�0|)(z − Ĥ0)−1 is the reduced resol-
vent operator for the HF reference state |�0〉 [3,48].

The different terms in the MPn series of Eq. (1) are most
compactly represented by means of Hugenholtz diagrams
[1,49]. Diagrams contributing to the n order consist of n
labeled vertices, vertically aligned by convention. Each vertex
corresponds to an ERI 〈i j||kl〉 and has two incoming and
two outgoing lines, corresponding to either particle orbitals
a, b, c, . . . (upward lines) or hole orbitals r, s, t, . . . (down-
ward lines) [3]. Additionally, diagrams with different line
orientations are considered distinct, a line cannot start and
end on the same vertex, each diagram must consist of only
one connected component, and its overall sign s = (−1)h−l

depends on the number of holes h and of closed loops l .
Each pair of adjacent vertices contributes the factor (

∑
h εh −∑

p εp)−1, where the sums run over the particles and holes
crossing an imaginary horizontal line between the vertices.
Finally, each diagram is scaled by 2−p, p being the number
of equivalent line pairs (i.e., codirected lines that start and
end on the same vertex) [3]. The number of nth-order Hugen-
holtz diagrams grows factorially with n [50]. Representative
n = 2–4 diagrams are shown in Fig. 1. Our DiagMC approach
presented below directly samples the expansion of the corre-
lation energy (1) in terms of Hugenholtz diagrams.

We now observe, following recent work on MBPT in
nuclear physics [39,40], that, according to graph theory,
Hugenholtz diagrams of order n can be conveniently encoded
into n × n adjacency matrices that satisfy the following con-
ditions: (i) Ai j can only take values 0, 1, 2, (ii)

∑
i Ai j = 2 ∀ j,

(iii)
∑

j Ai j = 2 ∀i, and (iv) Aii = 0 ∀i. Figure 1 shows the
adjacency matrix representations of selected MPn diagrams.
We stress that in some contexts one names “diagram” the
summed-over expression, after the sums over the hole and par-
ticle indices have been carried out. Here, we call “diagram” an
expression depending on these indices, with no sum implied.
We make this apparent by introducing appropriate subscript
indices on the entries of the matrices of Fig. 1; the diagram-
matic rules above, along with the convention we choose for
the adjacency matrix, imply that entries below (above) the
diagonal will carry hole (particle) indices, respectively. The
core idea of the present paper is to stochastically sample these
diagrams—through their matrix representation—at all orders,
varying the topology of the diagram and the value of the

FIG. 1. Representative Hugenholtz diagrams contributing to the
n order of MP theory with n = 2, 3, and 4 along with their cor-
responding adjacency matrices [39,40] shown to the right of each
diagram. The different types of DiagMC updates are indicated by
blue arrows (for Extend and Squeeze), by magenta arrows (for Shuf-
fle), and by green arrows (for Modify) (see main text for details).

indices [26,51–53], converging, in the statistical sense, to the
exact correlation energy.

For this purpose, we start by relaxing condition (iv) above,
considering a larger set of matrices that have Aii �= 0. Within
this extended configuration space E , we distinguish between
physical matrices, satisfying all four conditions, and unphys-
ical ones, satisfying only conditions (i)–(iii) above. It can
be shown (see Appendix A) that each matrix in E can be
represented as the sum of two N × N permutation matrices
P defined by the following conditions: (1) Each Pi j = 0 or
1, (2)

∑
i Pi j = 1 ∀ j, and (3)

∑
j Pi j = 1 ∀i. The converse is

also, more trivially, true: Two permutation matrices always
sum to a matrix in E . Therefore, the configuration space E
consists essentially of two copies of the permutation matrix
configuration space. As a consequence, we can just design a
stochastic process sampling in the permutation matrix config-
uration space, subsequently “doubling” it to sample over E .

III. DIAGRAMMATIC MONTE CARLO PROCEDURE

We now apply the DiagMC methodology [26,51] by de-
vising a set of updates that can ergodically explore the space
of permutation matrices. The Extend1 update adds a row to
the bottom and a column to the right of a permutation matrix,
thereby going from order N to order N + 1. We begin by
choosing a nonzero entry Pi j of the original matrix, setting
it to zero, and subsequently “projecting” it onto the newly
created column and row. More specifically, we add two new
entries P(N+1) j = 1 and Pi(N+1) = 1. Due to the conventions
discussed above, Pi(N+1) will carry a hole index, while P(N+1) j

will carry a particle index. We then reuse the numerical value
of the index of the erased entry Pi j as the index carried by
one of the two new entries. Depending whether the old value
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was a particle or hole index, we will need to choose from a
discrete uniform random distribution a new hole or particle
index, respectively. The probability for this update is then

PExtend1 =
{

1
N np

if i � j,
1

N nh
otherwise,

(2)

where nh (np) is the total number of hole (particle) orbitals in
the basis set being used, respectively. For the complementary
update, that we denote Squeeze1, we need to remove the two
elements on the last row and column. There is just one way
of doing so. Then we need to restore the Pi j matrix element
whose index might correspond either to a hole or to a particle
state, and we can get the numerical value of that index from
the index of one of the removed entries. The probability is
then PSqueeze1

= 1.
The Extend2 update adds one column and one row to a

permutation matrix, and adds a new “1” entry on the diagonal,
on the bottom right. This will always take us to the unphysical
sector, and by convention the newly added entry will always
carry a hole index. The value is then drawn from a uniform
random distribution, and the probability is then PExtend2 =
1/nh. The complementary Squeeze2 update simply deletes the
matrix element in the bottom right corner, returning to an
N × N matrix. There are no probability distributions involved
in this process, therefore one has PSqueeze2

= 1.
In the Shuffle update, we first decide if we want to shuf-

fle rows or columns. We then choose two random rows or
columns and swap them. In doing so, the update might need
to replace a hole index with a particle one or vice versa,
thus requiring to draw numbers from a uniform distribution.
However, since the update is clearly self-complementary, one
does not need to keep track of the associated probabilities,
since the acceptance ratio depends on weight ratios only.
Lastly, we design a Modify update, in which a nonzero hole or
particle entry is selected and the associated index is changed
to a different value chosen from a uniform distribution. This
update is also self-complementary [26,51–53].

It is easily seen that the set of updates just introduced is
ergodic. We then consider two permutation matrices and we
apply the updates just introduced to each matrix at each MC
step, with the constraint that the two matrices must always
have the same dimension. In the spirit of DiagMC, we ac-
cept or reject the updates with a probability chosen so as to
make the process satisfy a detailed balance condition [26,51–
53]; this implies that in the long run the process will spend
with each diagram a number of MC steps proportional to
the diagram weight, allowing us to collect statistics about the
ratio of energies at different orders. The process jumps back
and forth between the physical and unphysical sectors, the
latter not contributing to the sampled quantities [52,53]. We
verified that at every order the fraction of physical diagrams
is always substantially large, and moreover an arbitrary un-
physical penalty dividing the weight of unphysical diagrams
can help in tipping the balance towards the physical sector
[52,53].

We finally note that there are several distinct ways in which
a given adjacency matrix A can be represented as a sum of
permutation matrices. We will call the number of such ways
the multiplicity of A. Since the multiplicity is not always

TABLE I. Calculated correlation energies (in μEh) for BH, H2O,
and C6H6 in the 6-31G basis set compared with the reference MPn
data from the PSI4 code.

Molecule MP order n DiagMC (this work) Exact

BH 2 −38.983338 ± 0.007937 −38.993128
3 −13.297859 ± 0.004215 −13.301207
4 −5.726406 ± 0.022243 −5.728702
5 −2.664634 ± 0.050187 −2.779645

H2O 2 −129.050784 ± 0.025138 −129.053394
3 −1.550238 ± 0.010480 −1.554750
4 −5.110730 ± 0.052355 −5.247546

C6H6 3 −20.582538 ± 0.130253 −20.3382

one, some diagrams can be incorrectly “counted” more than
once. To avoid the multiple counting we divide the weight
associated to a matrix by its multiplicity. An algorithmic de-
termination of the multiplicity is presented in Appendix B.

IV. RESULTS

A. Correlation energies and scaling

As a first application of the proposed DiagMC/MPn
methodology, we carry out proof-of-principle computations
on the CH2, H2O, and BH molecules [54] and compare the
results with reference MPn calculations to assess the accu-
racy of the approach. This choice of molecules allows us to
explore the performance of the DiagMC/MPn approach for
different convergence patterns of the MPn series. While CH2

and BH are type-A molecules, for which the series converges
monotonically, H2O belongs to type B, exhibiting oscillating
convergence [55,56].

We observe that the DiagMC/MPn correlation energies
listed in Table I and shown in Figs. 2(a) and 2(b), calculated
using 1012 MC steps per data point, are in excellent agree-
ment with the reference MPn data computed using PSI4 [57],
which validates all of the elements of our DiagMC procedure
described above. While the error in the DiagMC/MPn cor-
relation energy depends on the molecule and basis set used,
it exhibits the expected statistical scaling 1/

√
NMC with the

number of MC steps [see Fig. 2(c)]. Figures 2(d) and 3(b)
show that, for a fixed NMC, the error increases approximately
linearly as the basis set size is increased from the smallest
(STO-3G) to the largest (6-31∗∗G). This leads to the overall
O(N2) scaling of the computational effort in our approach
with respect to the number of basis states, which makes it
much more attractive computationally than conventional MPn
(Nn+3). The traditional HF scales as N4 and the integral trans-
formation scales as N5. While these scalings could become the
bottleneck for large molecules, in our proof-of-principle cal-
culations on small- and medium-sized molecules, the integral
transformation is so fast that it does not contribute to the over-
all scaling. The correlation energy computed with a larger and
more flexible correlation-consistent polarized valence triple
zeta (cc-pVTZ) basis set is 4.915 62 ± 0.003 66μEh, to be
compared with the exact MP3 result of 4.870 32μEh.

It is important to note that, unlike in nuclear physics or
Hubbard-type models, in chemical systems the crucial quanti-
ties are the energy differences. Because the total MPn energies
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FIG. 2. (a), (b) MP3 and MP4 energies as calculated from our DiagMC procedure for CH2, H2O, and BH molecules and for the STO-3G,
3-21G, 6-31G, 6-31∗G, 6-31∗∗G basis sets with 1012 MC steps per data point. (c) Percentual error on the energy as a function of the number
of MC steps; note the logarithmic scale. The black dashed lines guide the eye and correspond to the statistical 1/

√
NMC scaling. (d) Percentual

error at MP3 level as a function of basis size for BH with 1012 MC steps. The dashed line guides the eyes, highlighting the essentially linear
scaling.

grow proportional to system size, reaching a given accuracy
for the energy differences would require an additional O(N2)
factor, bringing the overall scaling from O(N2) to O(N4),
which is still lower than the traditional O(Nn+3) scaling of
conventional MPn for n � 3. In particular, the highest-order

FIG. 3. (a) Expectation value of the sign as a function of the MP
order. Notice the logarithmic scale on the vertical axis. (b) Percentual
error at MP4 level as a function of basis size for BH with 1012 MC
steps. The dashed line guides the eyes, highlighting the essentially
linear scaling.

DiagMC/MP5 approach demonstrated here scales as O(N4)
compared to the O(N8) scaling of conventional MP5. Further,
for an important class of problems involving the calculation
of noncovalent interaction energies, symmetry-adapted per-
turbation theory (SAPT) [58–60] can be used. SAPT gives the
interaction energy directly in terms of the Brandow diagrams
[60], which are closely related to the Hugenholtz diagrams
considered in this work. DiagMC sampling of these diagrams
would eliminate the additional O(N2) factor and reinstate the
O(N2) scaling of SAPT correlation energies.

B. Sign problem

Some of the diagrams we sample have negative weight,
therefore we sample with respect to the absolute value of
the diagram weight Dξ [61]. Doing so, we observe that the
statistical error in DiagMC/MPn correlation energies grows
significantly with increasing order n. This is due to the
fermion sign problem, whereby the Hugenholtz diagrams with
opposite signs cancel out, making it necessary to use an
increasingly large number of MC steps to obtain a nonzero
signal-to-noise ratio [62–64]. For instance, calculating the
MP6 energy of NH using the 6-31G basis and 109 MC steps,
we obtain a positive contribution of 0.342 020 ± 0.001 172
and a negative contribution of 0.342 260 ± 0.001 26, with
greatly increased relative error once these are subtracted [65].
We have also investigated this analytically, verifying that sev-
eral topologies are dominated by near-perfect cancellations.

This phenomenon, bearing a remarkable resem-
blance to the sign problem observed in other contexts
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[27,33,34,53,66,67] is, however, distinct from—and less
severe than—the one that plagues quantum many-body MC
simulations of, e.g., Fermi-Hubbard models. There, one is
interested in the thermodynamic limit, and the expectation
value of the sign decreases exponentially with the size of the
system [62–64]. In contrast, for finite-size molecules explored
here, this expectation value is small, decreases exponentially
with the perturbation theory order, but is always finite, as
shown in Fig. 3(a), significantly reducing the acuity of the
sign problem.

Table I shows that the sign problem becomes severe
enough to strongly affect our results only at high MPn orders
(MP6 for type-A molecules and MP5 for type-B molecules).
Thus DiagMC/MPn yields fairly accurate correlation energies
(comparable to those given by coupled-cluster theory with sin-
gle, double, and perturbative triple excitations [CCSD(T)] for
type-A molecules). To explore the severity of the sign problem
for larger molecules, we performed DiagMC/MP3 simula-
tions on benzene (C6H6) and did not observe any significant
increase in statistical error compared to smaller molecules
(see Table I). This indicates that the sign problem does not
necessarily get more severe with increasing system size. In
future work it would be important to explore the sign problem
for larger molecules at higher MPn orders.

V. OUTLOOK AND CONCLUSIONS

We have demonstrated a low-scaling stochastic approach
to calculating molecular electronic correlation energies based
on DiagMC sampling of the MPn series. The approach sam-
ples the many-body electronic correlation energy directly
using Hugenholtz diagrams, encoded in adjacency matrices
using combinatorial graph theory [40]. Our DiagMC/MPn
approach shares many of the attractive features with its an-
tecedents in quantum many-body physics [26,27], such as low
scaling and the ability to converge towards the exact result
(the full CI limit). We demonstrate accurate results for the
MPn correlation energies with n � 5. Thus, our low-scaling
DiagMC/MPn methodology could be applied to a wide range
of quantum chemical problems, where high-precision esti-
mates of dynamical correlation energy are crucial, such as
calculating intermolecular dispersion interactions [68].

We find that results for n � 5 are affected by the sign prob-
lem, which, however, is significantly less severe than the sign
problem encountered in the thermodynamic limit [62,63] due
to the finite size of molecular systems. In future work, we plan
to address this problem (see Appendix C) by adapting the re-
cently developed CDet algorithm [69,70]. This would enable
one to perform reliable extrapolations to the full CI limit [55],
using, e.g., Padé approximants, resummation techniques, and
Feenberg scaling [4], and to explore the convergence behavior
of the MPn series for large molecules, currently outside of the
reach of modern quantum chemistry techniques [56].
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APPENDIX A: ADJACENCY MATRICES
AND PERMUTATION MATRICES

Here, we demonstrate the claim made in the main text,
that each adjacency matrix corresponding to a Hugenholtz di-
agram can be written as the sum of two permutation matrices.

Definition 1. A square matrix is said to be a permutation
matrix if its entries are either 1 or 0, and moreover, the sum of
each row/column is exactly 1.

A adjacency matrix in the extended configuration space
E defined in the main text is a 2-permutation matrix in the
following definition.

Definition 2. A square matrix is said to be a 2-permutation
matrix if its entries are either 2, 1, or 0, and the sum of each
row/column is exactly 2.

Clearly, the sum of any two permutation matrices is a
2-permutation matrix. We will call such 2-permutation ma-
trices decomposable. Our goal is to show that, in fact, all
2-permutation matrices are decomposable.

Proposition 3. Any 2-permutation matrix is decomposable,
i.e., it can be expressed as a sum of two permutation matrices.

We will use Lemmas 4 and 5 below, which are straightfor-
ward.

Lemma 4. Let M be a 2-permutation matrix and M ′ ob-
tained from M by deleting all rows and columns containing
an entry of value 2. Then M is decomposable if and only if M ′
is.

This lemma allows us to reduce to the case where M only
contains 1’s. We will assume this from now on.

Lemma 5. Let M be a 2-permutation matrix and M ′ ob-
tained from M by a series of row/column permutations. Then
M is decomposable if and only if M ′ is.

Proof of Proposition 3. Let M be a 2-permutation matrix.
We will show that M is decomposable. As mentioned above,
we can, and we will, assume that M only contains 0’s and 1’s.
By Lemma 5, it suffices to do so after a series of row and
column permutations. More precisely, by doing row/column
permutations, we will turn M into a new matrix with 1’s on
the diagonal. The decomposition of such a matrix into two
permutation matrices is obvious.

Starting with the first row, by doing a row/column permu-
tation, we can turn M into a new matrix such that the top left
is given by

[
1
1

]
.

045115-5



BIGHIN, HO, LEMESHKO, AND TSCHERBUL PHYSICAL REVIEW B 108, 045115 (2023)

Necessarily, anything else on the first column besides the first
two entries are 0’s like so, ⎡

⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Now, for the second row, we know that there exists a
nonzero entry. So by row/column permutation, we can turn
M into a new matrix with the first two columns having one of
the following two forms,⎡

⎢⎢⎢⎢⎢⎢⎣

1 1
1 1
0 0
0 0
...

...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 1
0 1
0 0
...

...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Now it is clear how to proceed inductively. The main point
is that suppose we are done with the first k rows, then the first
k entries of the (k + 1)th row will have one of the following
two forms,

[0 0 · · · 0 1] or [0 0 · · · 0 0], (A1)

i.e., there is at most one 1 entry here, which means that we
can find another 1 on the same row. Let (k + 1, l ) denote the
coordinates of that entry. Note that l � k + 1.

The lth column will have another 1 at coordinate (k′, l ).
If k′ < k + 1, then we use column permutation to swap the
lth column and the (k + 1)th column. If k′ > k + 1, then we
use row permutation to swap the k′th row and the (k + 2)th
row, and then, use column permutation to swap the lth column
and the (k + 1)th column. After doing this we see that the
(k + 2)th row will have the form (A1) again, where, of course,
in the first case, the 1 is on the (k + 1) slot. Now, we can
continue the process until we are done. In the end, our matrix
will have the following block(s) along the diagonal (and 0’s
everywhere else),

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is clear that this matrix is decomposable and the proof
concludes. �

APPENDIX B: COUNTING MULTIPLICITIES

Above, we showed that a 2-permutation matrix A could be
written as a sum of two permutation matrices. This was done
by showing that by permuting rows and columns of A, we can
bring it to a special form from which the decomposition of
A into a sum of two permutation matrices could be obtained
directly. To determine the multiplicity of a 2-permutation
matrix, i.e., to determine the number of ways to do that, we

proceed similarly. Namely, since permuting rows and columns
does not change the result, we can count the number of de-
compositions after A has been transformed to a special form.

In what follows, we will assume that A does not have
2-entries, as those are easy to deal with. From the proof of
the previous Appendix, we see that by permuting rows and
columns, any 2-permutation matrix A could be brought to
block matrix, where the diagonal is given by blocks of the
form

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It thus remains to count the number of matrices such as B
could be written as a sum of two permutation matrices. The
final answer for A will be the product of all those numbers for
all the blocks.

Suppose we want to write B = B′ + B′′, where B′ and B′′
are permutation matrices. We will now build B′ column by
column. For the first column, there are exactly two choices for
B′, corresponding to having 1 on the first or second row.

(1) Suppose we choose the 1 on the first row, we see that
for the second column, we have exactly one choice: picking
1 on the second row (since otherwise B′ will never have a 1
on the second row). Continuing this way, we see that there is
exactly one way to choose the rest of B′.

(2) Suppose we choose the 1 on the second row, and ar-
guing similarly, we also see that the rest of B′ is determined
uniquely. Thus, there is exactly one way to get the rest of B′.

Altogether, we see that there are exactly two ways to write
B as a sum of two permutation matrices. Thus, the multiplicity
of A is 2n, where n is the number of blocks.

APPENDIX C: SIGN PROBLEM

In this Appendix, we examine the sign problem in
Diag/MPn simulations and suggest a promising path towards
its resolution building on recent advances in connected de-
terminant DiagMC (CDet) [69]. As already stressed in the
main text, we note from the outset that the sign problem
in Diag/MPn is different from that encountered in previous
fermionic DiagMC simulations (see, e.g., Ref. [69]). The lat-
ter are typically performed at finite temperature and in the
thermodynamic limit, by sampling imaginary-time Feynman
diagrams. In contrast, here we are interested in systems with
a finite number of electrons at zero temperature described by
the Hugenholtz diagrams.

The sign problem here manifests itself as a rapid (expo-
nential or factorial) decline, as a function of the MP order n,
of the average value of the sign of sampled diagrams, caused
by a nearly perfect cancellation between the positive and neg-
ative diagrams [63,69]. This decline causes a rapid increase
in statistical error, if the number of MC steps is kept fixed,
for the quantity being calculated (in our case, the correlation
energy) making DiagMC/MPn simulations for n � 6 very
computationally demanding. Figure 3(a) shows the average
value of the sign as a function of MPn order. The sign problem
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becomes quite relevant at the fourth order, hence we will focus
on MP4 diagrams in the following.

To gain more insight into how sign cancellations occur
between the individual Hugenholtz diagrams, we define the
quantity

RS = | ∑i∈S Di|∑
i∈S |Di| , (C1)

where S denotes a subset of all diagrams and Di is the diagram
weight associated to the diagram i, as discussed in the main
text. From Eq. (C1) one immediately sees that RS will be close
to unity if no cancellations occur between the diagrams in the
subset S . In contrast, RS will approach zero if the sum of the
diagram in S has many cancellations, and will be exactly zero
in the case of perfect cancellation. We note that these quanti-
ties are not additive, i.e., given two subsets of all diagrams, be
they SA and SB, the conditions RSA ∼ 1 and RSB ∼ 1 do not
necessarily imply RSA∪SB ∼ 1, since cancellations may occur
between the diagrams when the subsets SA and SB are joined
together.

We now wish to use Eq. (C1) to estimate the degree
of cancellation between the different subsets of Hugenholtz
diagrams, in order to propose a path towards a solution. Pre-
liminarily, we assign a progressive integer number—let us
call it the diagram ID—to each order 4 diagram topology in
the following way: As discussed in the main text, the adja-
cency matrix of each diagram is the sum of two permutation
matrices. At order 4 there are 4! = 24 different permutation
matrices, and after decomposing a diagram in two permutation
matrices, we assign to each one an index—be they i and
j—according to the canonical ordering of the permutation it
represents. Finally, we assign to each diagram topology the
integer number 24i + j. It turns out that different numbers
can correspond to the same adjacency matrix (see Appendix B
on the multiplicity): In this case, we conventionally assign to
a diagram topology the smallest integer, which will be the
diagram ID. This establishes a one-to-one mapping between
a subset of integers and the diagram topologies at order 4.

Having done so, in Fig. 4 we show a scatter plot of the
R values for the distinct 39 fourth-order Hugenholtz diagram
topologies, as a function of their diagram ID, with the sub-
sets defined by all the diagrams with a fixed topology but
different internal indices. We observe that the vast majority
of the diagrams have R values above 0.2. Notable exceptions
include diagram topologies with ID 233, 262, and 334, which
correspond to the “single” diagram 4, and to the “triple”
diagrams 23 and 24 in Fig. 5.6 of Ref. [3]. These diagram
topologies have R � 0.05, signaling a large number of can-
cellations between positive and negative contributions, in turn
meaning that the stochastic sum over the internal variables
will be affected by a considerably large statistical error. Also,
these diagram topologies contribute the most to the statistical
error in the MP4 correlation energy, since the final error is
dominated by the terms with the largest error.

This suggests that one could greatly mitigate the sign
problem by identifying “problematic” topologies and replac-
ing, for these topologies, the stochastic sums with actual
sums. Extending this idea, one could imagine a mixed ap-
proach where the stochastic process moves through different

FIG. 4. The R factors defined by Eq. (C1) plotted vs diagram IDs
for MP4 Hugenholtz diagrams summed over their internal indices for
the BH molecule in the 6-31G basis. Diagram topologies with a total
positive expectation value of the sign are plotted in the upper panel,
and diagram topologies with a total negative expectation value of the
sign in the lower panel.

topologies, whereas all sums over the internal indices are
carried over exactly. Using the notation of Ref. [69], denoting
with T the topology of a diagram, and with X all internal
variables, this would correspond to sampling configurations
C = (T ) according to the distribution

P (C) =
∣∣∣∣∣
∑
X

D(T ;X )

∣∣∣∣∣, (C2)

motivated by cancellations between diagrams with the same
topology, whereas standard diagrammatic Monte Carlo sam-
ple configurations C = (T ,X ) according to the distribution

P (C) = |D(T ;X )|. (C3)

It is interesting to note that this approach would be com-
plementary to the CDet approach [71], which samples
configurations C = (X ) according to the distribution

P (C) =
∣∣∣∣∣
∑
T

D(T ;X )

∣∣∣∣∣, (C4)

giving rise to cancellation between diagrams with different
topologies. The CDet strategy could be adapted to the present
case, as well.

In conclusion, it is worth mentioning that significant
cancellations can occur when the diagrams with different
topologies are added together. For example, while the indi-
vidual RSi values for the single diagram topologies S1–S4 as
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defined in Fig. 5.6 of Ref. [3] are all above 0.5, we have
RS1∪···∪S4 = 0.016. This motivates our ongoing studies aimed
at further characterizing which diagrams give rise to most of

the cancellations in the MPn series, order by order, with poten-
tial far-reaching applications both for analytical and stochastic
techniques.
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