
RELATIVE SERRE DUALITY FOR HECKE CATEGORIES
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ABSTRACT. We prove a conjecture of Gorsky, Hogancamp, Mellit, and Nakagane in the Weyl group case.
Namely, we show that the left and right adjoints of the parabolic induction functor between the associated
Hecke categories of Soergel bimodules differ by the relative full twist.
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1. INTRODUCTION

1.1. Soergel bimodules. Let G be a connected reductive group over Fq, equipped with a fixed Borel
subgroup B and a fixed maximal torus T ⊆ B. Let R := Sym(X ∗(T )⊗Z C〈−2〉) be the graded polynomial
algebra generated by rank T elements where the generators live in graded degree 2. Here, the angular
bracket 〈−〉 denotes a formal grading shift, which is distinct from the square bracket [−] (which will
appear later on in the paper) used to denote a cohomological shift.

Consider BiModR(Vectgr,♥), the monoidal abelian category of graded bimodules over R, where the
monoidal product ⊗R is denoted by ⋆. By construction, R is equipped with an action of the Weyl group
W of G. The category of Soergel bimodules1 SBimW is the full idempotent complete monoidal additive
subcategory of BiModR(Vectgr,♥) stable under grading shifts and generated by objects of the form R⊗Rs R
where s ∈W is a simple reflection. In other words, SBimW is generated, under taking finite direct sums,
summands, and grading shifts, by R⊗Rs1 R⊗Rs2 · · · ⊗Rsk R for any sequence of simple reflections si ∈W .

Let Chb(SBimW ) denote the monoidal DG-category of bounded chain complexes of Soergel bimodules,
whose monoidal product is also denoted by ⋆. In [R], Rouquier constructs an object Rβ ∈ Chb(SBimW ),
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1The notation SBimW is slightly abusive as SBimW depends on the Coxeter system and not just the Weyl group W . Note also

that, as the notation might suggest, the category SBimW can be more generally be defined for any Coxeter system. In this paper,
we will only consider the (finite) Weyl group case.
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known as the Rouquier complex, associated to each β ∈ BrW , the corresponding braid group, that is
compatible with the braid relations in the sense that we have an equivalence of objects in Chb(SBimW )

Rβ1
⋆ Rβ2
≃ Rβ1β2

, for β1,β2 ∈ BrW .

In particular, we have a complex FTG ∈ Chb(SBimW ) associated to the full twist braid, i.e., the square of
the longest element.

1.2. Parabolic induction and restriction functors. Let P be a proper standard parabolic subgroup of
G with Levi factor L. The box tensor product induces a monoidal fully faithful embedding

ι : Chb(SBimWL
) ,→ Chb(SBimW ).

One can show that ι admits both a left and a right adjoint, denoted by ιL and ιR, respectively.2 Since ι
is a monoidal fully faithful embedding, unless confusion is likely to occur, we will identify objects in
Chb(SBimWL

) with their images in Chb(SBimW ) via ι without explicitly invoking ι.

1.3. Serre duality for Hecke categories. Despite their representation theoretic origin, the categories
of Soergel bimodules Chb(SBimW ) in type A play an important role in low dimensional topology. For
example, they are originally used in [K] to define the HOMFLY-PT homology of links and have since
attracted a lot of attention in the study of link invariants.

Also in type A, and P = B, motivated by a certain symmetry in the HOMFLY-PT homology theory of
links, Gorsky, Hogancamp, Mellit, and Nakagane showed that ιL and ιR are related to each other by the
full twist FTG . More precisely, they proved the following theorem, which refines some results of [BBM;
MS] in these cases.

Theorem 1.3.1 ([G+]). For G = GLn, P the parabolic subgroup given by the partition (r, 1, 1, . . . , 1) (and
hence, L ≃ GLr ×Gn−r

m ), we have a natural equivalence of functors ιR ≃ ιL(FTG,L ⋆ −), where FTG,L :=
FT−1

L ⋆ FTG .

This result is quite similar to the classical Verdier/Serre duality in algebraic geometry where the two
types of pullbacks differ by the dualizing sheaf for a smooth morphism. The authors of [G+] thus refer
to this result as a Serre duality for Hecke categories, where FTG,L plays the role of the dualizing sheaf.

1.4. Main result. The main result of this paper is the following theorem, which generalizes Theo-
rem 1.3.1 above to arbitrary connected reductive groups G and arbitrary parabolic subgroups. This was
given as [G+, Conjecture 1.8] in their original paper.

Theorem 1.4.1. We have an equivalence of functors ιR ≃ ιL(FTG,L ⋆−).

We will prove Theorem 1.4.1 by geometric means using a geometric avatar of Chb(SBimW ). We
expect that the general strategy of the proof can be adapted directly to the more combinatorial setup of
Soergel bimodules. However, the geometric setup allows for a very efficient and transparent proof.

2. GEOMETRIC HECKE CATEGORIES

In this section, we will describe the geometric setup and explain how it is related to the algebraic
setup involving Soergel bimodules described in the introduction.

2See [G+] for more details or §2.2 below for a geometric perspective.
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2.1. Geometric setup. We define the finite Hecke category associated to G to be

HG := Shvgr,c(B\G/B),

where Shvgr,c(B\G/B) is the category of graded sheaves on B\G/B developed [HLa]. We recall that
the theory of graded sheaves is defined for any Artin stack of finite type and affine stabilizers and is
equipped with a six-functor formalism that formally behaves like the classical six-functor formalism for
constructible ℓ-adic sheaves. In fact, for any such stack Y, we have a functor of forgetting the grading

oblvgr : Shvgr,c(Y)→ Shvc(Y)

that realizes Shvgr,c(Y) as a graded lift of Shvc(Y). Moreover, oblvgr is compatible with the six-functor
formalism on both sides.

In this paper, we only use the formal aspects of the theory of graded sheaves.

2.1.1. HG is a monoidal category with respect to the convolution product ⋆. More precisely, if we let
Vectgr be the symmetric monoidal stable∞-category of graded chain complexes of Qℓ-vector spaces
and Vectgr,c the full symmetric monoidal subcategory spanned by compact objects, i.e., those with
finite-dimensional cohomology, supported in finitely many graded and cohomological degrees, then, HG
is an algebra object in Vectgr,c -Mod, the symmetric monoidal category of Vectgr,c-module categories. In
particular, this means that the convolution product ⋆ is compatible with cohomological shifts [−] and
grading shifts 〈−〉.

When confusion is unlikely to arise, we will drop the ⋆, and write, for example K L instead of K ⋆ L for
K , L ∈ HG . We have the following result, which allows us to work purely geometrically when studying
Chb(SBimW ).

Theorem 2.1.2 ([HLa, Theorem 4.4.1]). We have an equivalence of monoidal categories3

Shvgr,c(B\G/B)≃ Chb(SBimW ).

In this paper, we will work exclusive in the geometric setting, viewing all objects in Chb(SBimW ) as
objects in HG .

Remark 2.1.3. The geometric version HG plays an important role in low dimensional topology. For
example, they are originally used in [WW] to geometrically define the HOMFLY-PT homology of links
and used in [HLb] to establish a relation between the HOMFLY-PT link homology and Hilbert schemes of
points on C2, as conjectured by Gorsky, Negut, , and Rasmussen in [GNR]. Note also that HG is denoted
as Hgr

G in [HLb].

2.1.4. Standard and co-standard objects. By the Bruhat decomposition, we have a stratification of B\G/B
by B\BwB/B for w ∈ W . Let ȷw : B\BwB/B → B\G/B denote the embedding. The standard (resp.
co-standard) object ∆w (resp. ∇w) is defined to be ȷw!Qℓ (resp. ȷw∗Qℓ). By construction, we always
have a map

(2.1.5) ∆w ≃ ȷw!Qℓ→ ȷw∗Qℓ ≃∇w.

Under the equivalence stated in Theorem 2.1.2, ∆w (resp. ∇w) corresponds to the Rouquier complex
Rβ associated to the positive (resp. negative) braid β associated to w. In particular, the full twist element
FTG corresponds to ∆2

w0
, where w0 is the longest element of W .

3Since the graded sheaf theory Shvgr,c(−) developed in [HLa] is based on the theory of ℓ-adic sheaves, it has coefficients in Qℓ.
Since Qℓ ≃ C as fields, there is no difference between working over C and Qℓ.
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2.2. Geometric parabolic induction and restriction functors. We will now describe the geometric
version of the parabolic induction and restriction functors. Let P be a proper standard parabolic subgroup
of G with Levi factor L. Let BL be the Borel subgroup of L defined as the image of B in L. Consider the
following correspondence

B\P/B

BL\L/BL B\G/B.

p q

2.2.1. Parabolic induction functor. Let ι := q!p
∗ : HL → HG denote the functor of parabolic induction. It

is easy to see that this is a monoidal functor.
Note that p∗ and p∗ are inverses of each other

Shvgr,c(BL\L/BL) Shvgr,c(B\P/B)≃
p∗

p∗

since p is a bundle with fiber BUP , the classifying space of UP , which is the unipotent radical of P.
Since q is a closed embedding, q! ≃ q∗ is fully faithful. Thus, ι also fully faithful. We will therefore
frequently view objects of HL as objects of HG without explicitly invoking the functor ι. Note that by
fully faithfulness, ιRι ≃ ιLι ≃ idHL

.

2.2.2. Parabolic restriction functors. The functor ι admits a right adjoint, given by ιR := p∗q
!. Moreover,

since q is proper and p∗ and p∗ are mutually inverses, ι also admits a left adjoint, given by ιL := p∗q
∗.

3. THE PROOF

We are now ready to prove Theorem 1.4.1.

3.1. The strategy. Theorem 1.4.1 is a consequence of Propositions 3.1.1 and 3.1.2.

Proposition 3.1.1. The functor FTG,L ⋆− induces an equivalence of categories ker ιR
≃
−→ ker ιL .

Proposition 3.1.2. There exists a morphism α : FTG → FTL such that ιL(α) : ιL(FTG)→ ιL(FTL)≃ FTL is
an equivalence.

We will now prove Theorem 1.4.1 assuming Propositions 3.1.1 and 3.1.2.

Proof of Theorem 1.4.1. Let j : B\(G − P)/B→ B\G/B denote the complement of the closed immersion
q. For any K ∈ HG , we have the following exact triangle

q!q
!K → K → j∗ j

∗K

which is equivalent to
q!p
∗p∗q

!K → K → j∗ j
∗K

and hence, to
ιιRK → K → j∗ j

∗K .

Applying FTG,L ⋆− to the above triangle, we obtain

FTG,Lιι
RK → FTG,LK → FTG,L j∗ j

∗K .

Since j∗ j
∗K ∈ ker ιR, we get FTG,L j∗ j

∗K ∈ ker ιL , by Proposition 3.1.1. Thus, applying ιL to the above
triangle, we obtain

(3.1.3) ιL(FTG,LK)≃ ιL(FTG,Lιι
RK).

But now,

ιL(FTG,Lιι
RK)≃ ιL(FTG,L)ι

R(K)≃ FT−1
L ι

L(FTG)ι
R(K)

FT−1
L ι

L(α)ιR(K)
−−−−−−−−→

≃
FT−1

L FTLι
R(K)≃ ιR(K).(3.1.4)
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Here, the first and second equivalences follow from the fact that HL is rigid (see [HLb, Proposi-
tion 2.10.2]), which implies that ιL is HL-linear with respect to the actions of HL on itself and on
HG via ι. The third equivalence follows from Proposition 3.1.2.

Combining (3.1.3) and (3.1.4) and observing that all the morphisms involved are natural in K , we
obtain the desired equivalence. □

We will prove Propositions 3.1.1 and 3.1.2 in the remainder of the paper.

3.2. Proof of Proposition 3.1.1. We start with the following lemma.

Lemma 3.2.1. The following statements are equivalent:
(i) FTG,L ⋆− induces an equivalence of categories ker ιR

≃
−→ ker ιL .

(ii) FTG ⋆− induces an equivalence of categories ker ιR
≃
−→ ker ιL .

Proof. We will show that (ii) implies (i). The converse is similar.
By rigidity of HL , which implies that ιL and ιR are HL-linear, we see that FTL⋆− induces an equivalence

of categories between ker ιR (resp. ker ιL) with itself. But now, this observation, combined with the
current assumption that FTG ⋆− induces an equivalence between ker ιR and ker ιL , allows us to conclude
since

FTG,L ⋆− ≃ FT−1
L ⋆ FTG ⋆−.

□

It remains to prove Lemma 3.2.1.(ii).

Lemma 3.2.2. FTG ⋆− induces an equivalence of categories ker ιR
≃
−→ ker ιL .

Proof. Observe that
ker ιR = 〈∇u | u /∈WL〉,

where the RHS denotes the smallest Vectgr,c-linear full stable infinity subcategory of HG containing all
objects of the form ∇u for u /∈WL . In other words, it is the smallest full subcategory of HG containing
∇u for u /∈WL that is closed under finite direct sums, shifts, cones, and grading shifts.

Since for any u ∈W ,

ℓ(w0u) + ℓ(u−1) = ℓ(w0)− ℓ(u) + ℓ(u−1) = ℓ(w0),

∆w0
≃∆w0u∆u−1 ≃∆w0u(∇u)−1, or equivalently, ∆w0

∇u ≃∆w0u. Thus,

∆w0
ker ιR = 〈∆w0u | u /∈WL〉= 〈∆t | t ∈ τ〉

where
τ= {w0u | u /∈WL} ⊂W.

Observe that τ is closed with respect to the Bruhat order on W , or equivalently, the union of B\BvB/B
for v ∈ τ is a closed substack of B\G/B. Indeed, since the map W →W given by u 7→ w0u reverses the
Bruhat order (see [H, Example 3, p. 119]), to show that τ is closed, it suffices to show that W \WL is
open. But this is equivalent to the fact that WL is closed, which is true.

Thus,
∆w0

ker ιR = 〈∆t | t ∈ τ〉= 〈∇t | t ∈ τ〉= 〈∇w0u | u /∈WL〉.
But now, we have

∆2
w0

ker ιR = 〈∆w0
∇w0u | u /∈WL〉

= 〈∆w2
0u | u /∈WL〉

= 〈∆u | u /∈WL〉

= ker ιL ,

and we are done. □

The proof of Proposition 3.1.1 is complete. □
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3.3. Proof of Proposition 3.1.2.

3.3.1. Constructing α. Observe that we can write w0 = uw0,L such that ℓ(w0) = ℓ(u) + ℓ(w0,L). Indeed,
take u= w0w−1

0,L , then since w0 is the longest element

ℓ(u) = ℓ(w0)− ℓ(w−1
0,L) = ℓ(w0)− ℓ(w0,L)

and hence,
ℓ(w0) = ℓ(u) + ℓ(w0,L).

Thus, we have

FTG ≃∆2
w0
≃∆w0

∆w−1
0
≃∆u∆w0,L

∆w−1
0,L
∆u−1 ≃∆uFTL∆u−1 .

Thus,

(3.3.2) FTL ≃∆−1
u FTG∆

−1
u−1 ≃ FTG∆

−1
u ∆

−1
u−1 ≃ FTG∇u−1∇u,

where the second to last equivalence is due to the fact that FTG commutes with ∆−1
u since this is an

identity in the braid group, see [SB, Satz 7.2].4

Now, the map α can be constructed as the composition

(3.3.3) FTG ≃ FTG∆
−1
u ∆u ≃ FTG∇u−1∆u

β
−→ FTG∇u−1∇u ≃ FTL .

Here, the non-trivial morphism β is given by (2.1.5) and the last equivalence is due to (3.3.2).

3.3.4. ιL(α) is an equivalence. To show that ιL(α) is an equivalence, by construction, it suffices to show
that the map ιL(β) is an equivalence, where β is defined in (3.3.3). Equivalently, we want to show that
Cone(β) ∈ ker ιL , which is equivalent to showing that

FTG∇u−1 Cone(∆u→∇u) ∈ ker ιL .

By Lemma 3.2.2, this is equivalent to

∇u−1 Cone(∆u→∇u) ∈ ker ιR,

which is a direct consequence of the following two lemmas using the fact that i! j∗ ≃ 0 where i and j
form a pair of closed embedding and open complement.

Lemma 3.3.5. ∇u−1 Cone(∆u→∇u) ∈ 〈∇u−1 v | u> v〉.

Lemma 3.3.6. {u−1v | u> v} ∩WL = ;.

We will prove these two lemmas in the remainder of this subsection. For the proof of Lemma 3.3.5,
we need the following elementary lemma.

Lemma 3.3.7. For x , y ∈W such that y > x, we have

∇y−1∆x =∇y−1 x .

Proof. Since y > x , we can write y = xz such that ℓ(y) = ℓ(x) + ℓ(z) and hence, y−1 = z−1 x−1, where
ℓ(y−1) = ℓ(z−1) + ℓ(x−1). Thus,

∇y−1∆x ≃∇z−1∇x−1∆x ≃∇z−1 ≃∇y−1 x .

□

Proof of Lemma 3.3.5. By construction,

Cone(∆u→∇u) ∈ 〈∆v | u> v〉.

Thus, by Lemma 3.3.7,
∇u−1 Cone(∆u→∇u) ∈ 〈∇u−1 v | u> v〉.

□
4Note that this is strictly weaker than the centrality of FTG as proved in [BT].
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Proof of Lemma 3.3.6. Recall that u = w0w−1
0,L = w0w0,L and hence, u−1v = w0,Lw0v. Thus, it suffices to

show that w0v /∈WL for all v < u. To do that, we will show that for such v, ℓ(w0v) > ℓ(w0,L), which
implies the desired result since w0,L is the longest element in WL . This is true since ℓ(u) > ℓ(v), and
hence ℓ(w0v)> ℓ(w0u) = ℓ(w0,L). □

The proof of Proposition 3.1.2 is now complete. □
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